If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2-4=20
We move all terms to the left:
6x^2-4-(20)=0
We add all the numbers together, and all the variables
6x^2-24=0
a = 6; b = 0; c = -24;
Δ = b2-4ac
Δ = 02-4·6·(-24)
Δ = 576
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{576}=24$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-24}{2*6}=\frac{-24}{12} =-2 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+24}{2*6}=\frac{24}{12} =2 $
| 75+8(x-125)=4x-305 | | x/6.5=2.3/6.5 | | 4r-5=2r+13 | | 7x-35=8x-42 | | 6x12=12 | | 4(3x+1)=-5(5x-2) | | 4(t+18=8 | | 9n-7=5n-13 | | (1/3)^x+8=3^3x+2 | | 4/3e–17–5/6e=11 | | 7/8x=6/4 | | 0.8y=8 | | 2(5-3x)+9x=28+6x | | 10x=-2.5 | | 6.5x=3.9 | | -5(b^-1)^2+11b^-1-2=0 | | g/31=7 | | 2j−j−1=12 | | 9−6m=−39 | | 7u(-7)-4=24 | | 3s−6=3 | | 23+5x=(18+3)2 | | −20x^2+64x+48=0 | | 2k−3=13= | | y+11=69 | | −20x2+64x+48=0 | | 2k−3=13 | | −20x2+64x+48=0. | | 3(x-5)^2+6=56 | | r+-1=-19 | | s+-11=2 | | p+-2=5 |